Variability in Baseball Throwing Metrics During a Structured Long-Toss Program: Does one size fit all or should programs be individualized?

Nels Leafblad MD, Dirk Larson MD, Glenn Fleisig PhD, Stan Conte DPT, Stephen Fealy MD, Joshua Dines MD, John D’Angelo BS, Christopher Camp MD

Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA

Background

- Structured long-toss used for rehabilitating pitchers.
- Programs vary, but many are not individualized.
- Max-distance throwing results in large variation in throwing metrics.
- Limited data on intra- and inter-thrower reliability in throwing metrics during long-toss.

Purpose

- Describe the progression of throwing metrics through a structured long-toss program. Assess intra-thrower and inter-thrower reliability for ball velocity and elbow varus torque in pitchers completing the program.

Methods

- 60 healthy high school and collegiate pitchers participated in pre-determined, progressive long-toss program:
 - 5 full-effort throws at 90 ft, 120 ft, 150 ft, 180 ft, and from mound
- Metrics: elbow varus torque, ball velocity, arm slot, arm speed, shoulder rotation
- Radar gun measured ball velocity. motusBASEBALL sensor sleeve (Motus Global) measured other metrics.
- Intra- and inter-thrower reliabilities calculated at every distance.

Results

Progression of metrics through long-toss program

<table>
<thead>
<tr>
<th>Distance</th>
<th>90 ft</th>
<th>120 ft</th>
<th>150 ft</th>
<th>180 ft</th>
<th>Mound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arm Slot (°)</td>
<td>50</td>
<td>48</td>
<td>48</td>
<td>47</td>
<td>50.6</td>
</tr>
<tr>
<td>Arm Speed (>s)</td>
<td>5203</td>
<td>5302</td>
<td>5357</td>
<td>5407</td>
<td>5527</td>
</tr>
<tr>
<td>Shoulder Rotation (°)</td>
<td>161.5</td>
<td>167.0</td>
<td>170.0</td>
<td>173.4</td>
<td>160.9</td>
</tr>
<tr>
<td>Elbow Torque (N·m)</td>
<td>67.7</td>
<td>69.7</td>
<td>70.7</td>
<td>71.2</td>
<td>71.1</td>
</tr>
<tr>
<td>Ball Velocity (MPH)</td>
<td>69.6</td>
<td>72.2</td>
<td>73.4</td>
<td>74.5</td>
<td>77.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distance</th>
<th>90 ft</th>
<th>120 ft</th>
<th>150 ft</th>
<th>180 ft</th>
<th>Mound</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-value</td>
<td>0.04*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.002</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.001</td>
</tr>
</tbody>
</table>

Intra-class correlation coefficient (ICC) was >0.75 at all distances for elbow torque and ball velocity

ICC<0.40 = poor
ICC 0.40-0.59 = fair
ICC 0.60-0.75 = good
ICC >0.75 = excellent

Intra-thrower reliabilities

Inter-thrower reliabilities

*After applying the stepdown Bonferroni adjustment, no pairwise comparisons were significant.

Significant post-hoc differences are indicated with the following superscripts: (a) 90 ft-120 ft; (b) 90 ft-150 ft; (c) 90 ft-180 ft; (d) 90 ft-mound; (e) 120 ft-150 ft; (f) 120 ft-180 ft; (g) 120 ft-mound; (h) 150 ft-180 ft; (i) 150 ft-mound; (j) 180 ft-mound.

Progression of elbow torque and ball velocity

- No significant changes in elbow torque between distances ≥ 120 ft
- Throwing from mound does not place significantly more torque on the elbow than throwing at 120 ft
- Ball velocity increased significantly at each progressive distance and at the mound

Conclusion

- Ball velocity significantly changed at each progressive throwing distance.
- Elbow torque did not significantly change ≥ 120 ft long-toss.
- It may be feasible to incorporate mound throwing earlier in rehab process.
- Exercise caution when relying on radar guns to estimate elbow torque.
- Some athletes would likely benefit from individualized long-toss throwing program.