The Effect of Concussion and Concussion Prevention Strategies on Performance in Youth Ice Hockey

Paul Eliason, Carly McKay, Willem Meeuwisse, Brent Hagel, Luc Nadeau, Carolyn Emery
Disclosures

• Nothing to disclose
Background

• Hockey is one of the most popular winter sports in Canada
 – 634,892 registered players in 2013-2014 season

• Concussion is the most common specific injury in youth hockey (up to ~30% of all injuries)

Hockey Canada Annual Report; Emery et al. 2006, 2008
Background

• Hockey is one of the most popular winter sports in Canada
 – 634,892 registered players in 2013-2014 season
• Concussion is the most common specific injury in youth hockey (up to ~30% of all injuries)
 – Body checking is the primary mechanism of injury
 – Previous concussion is a significant risk factor for incurring another concussion
 • → HC policy change

Hockey Canada Annual Report; Emery et al. 2006, 2008, 2010
Background

- Acute period post concussion:
 - Impaired reaction time and memory scores (Collins et al. 2003)
 - Balance deficits (Guskiewicz et al. 2001)
 - Cognitive impairments (McCrea et al. 2003)
Background

• Lack of concussion research investigating:
 – Long term effects
 – Youth (exception: epidemiology)
 – Effects on sport-specific skill performance
Hockey Canada Skills Test (HCST)

- A way to measure skill acquisition and development in youth ice hockey players
- May be instrumental in detecting possible effects of a previous concussion on sport-specific skill performance
Components of the HCST

- Forward agility weave
Components of the HCST

- Forward agility weave
- Forward/backward speed skate
Components of the HCST

- Forward agility weave
- Forward/backward speed skate
- Transition agility
Components of the HCST

- Forward agility weave
- Forward/backward speed skate
- Transition agility
- 6-Repeat endurance skate
Objectives

• To determine the:
 – Test-retest reliability of the HCST
 – Association between previous history of concussion and HCST
Methods

• On-ice
 – 4 HCST components

• Off-ice
 – Players completed a baseline questionnaire regarding any and all previous concussions they have received prior to HCST
Recruitment

<table>
<thead>
<tr>
<th>Year</th>
<th>Group Description</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012-2013</td>
<td>Elite Bantam & Midget (upper 20%)</td>
<td>n=113</td>
</tr>
<tr>
<td>2013-2014</td>
<td>Elite & non-elite Pee Wee & Bantam</td>
<td>n=231</td>
</tr>
<tr>
<td>2014-2015</td>
<td>Elite & non-elite Pee Wee & Bantam</td>
<td>n=252</td>
</tr>
</tbody>
</table>
HCST Demographics

<table>
<thead>
<tr>
<th></th>
<th>Pee Wee (n=348)</th>
<th>Bantam (n=175)</th>
<th>Midget (n=73)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Conc. (n=246)</td>
<td>Conc. (n=102)</td>
<td>No Conc. (n=108)</td>
</tr>
<tr>
<td>Age (mean, in years)</td>
<td>11.60</td>
<td>11.63</td>
<td>13.66</td>
</tr>
<tr>
<td>Sex:</td>
<td>Male: 234 (95%)</td>
<td>99 (97%)</td>
<td>86 (79%)</td>
</tr>
<tr>
<td></td>
<td>Female: 12 (5%)</td>
<td>3 (3%)</td>
<td>22 (21%)</td>
</tr>
<tr>
<td>Division of Play:</td>
<td>Elite: 74 (30%)</td>
<td>32 (32%)</td>
<td>49 (50%)</td>
</tr>
<tr>
<td></td>
<td>Non-elite: 170 (70%)</td>
<td>69 (68%)</td>
<td>49 (50%)</td>
</tr>
<tr>
<td>Number of Previous Concussions:</td>
<td>1x: 88 (86%)</td>
<td>2x: 13 (13%)</td>
<td>1x: 56 (85%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3x: 1 (1%)</td>
<td></td>
</tr>
</tbody>
</table>
HCST Test-Retest Reliability

Forward Agility Weave

Without Puck:
Mean Difference: 0.099 s
LOA: -1.257 to 1.454 s
ICC: 0.89 (95% CI 0.81-0.98)

With Puck:
Mean Difference: 0.303 s
LOA: -1.897 to 2.507 s
ICC: 0.85 (95% CI 0.74-0.97)

Transition Agility

Without Puck:
Mean Difference: 0.117 s
LOA: -1.193 to 1.427 s
ICC: 0.92 (95% CI 0.85-0.98)

With Puck:
Mean Difference: -0.397 s
LOA: -3.892 to 3.098 s
ICC: 0.74 (95% CI 0.56-0.93)
HCST Test-Retest Reliability

Forward/Backward Speed Skate

Forwards Without Puck:
- Mean Difference: 0.019 s
- LOA: -0.520 to 0.558 s
- ICC: 0.82 (0.68-0.95)

Forwards With Puck:
- Mean Difference: 0.033 s
- LOA: -0.664 to 0.729 s
- ICC: 0.75 (0.58-0.93)

Backwards Without Puck:
- Mean Difference: 0.001 s
- LOA: -0.723 to 0.726 s
- ICC: 0.81 (0.67-0.95)

Backwards With Puck:
- Mean Difference: 0.072 s
- LOA: -0.604 to 0.748 s
- ICC: 0.86 (0.76-0.97)

6 Repeat Endurance Skate

Without Puck:
- Mean Difference: 0.200 s
- LOA: -1.480 to 1.881 s
- ICC: 0.50 (95% CI 0.19-0.80)
Mean HCST Scores

• Comparing the mean times of the various HCST components by history of concussion and:
 – Level of play (Pee Wee, Bantam, Midget)
 – Sex
• No statistically significant differences
Exploratory Results

• Multiple linear regression:
 – History of concussion was not a significant independent variable of performance

• Significant variables:
 – Position
 – Elite/non-elite
 – Level of play (Pee Wee, Bantam, Midget)
 – Sex
 – Age (some outcomes)
 – Previous MSK injury within last 1 year
Take Home Points

• HCST is a reliable way to measure on-ice sport specific skill performance
• Post-concussion persistent deficiencies
 – No deficiencies?
 – Test not sensitive enough?
Limitations/Future Outcomes

• Cross-sectional study
 – Use HCST scores to predict future risk of injury?
• History of concussion at any time
 – Other ways to look at concussion
• Survivor bias
The Effect of Body Checking Policy Change on Game Skill Performance in 11-12 Year Old Ice Hockey Players

Ash Kolstad, Luc Nadeau, Paul Eliason, Luz Palacios-Derflingher, Claude Goulet, Carolyn Emery
Objective

• To compare offensive performance measures in elite (upper 30% by division of play) Pee Wee ice hockey players that have one-year BC experience (Calgary) to players without BC experience (Québec City)
Offensive Performance

• **Outcome Measures**: Games were analyzed for offensive performance metrics for the puck carrier using the ice hockey adapted Team Sport Assessment Procedure

Nadeau et al., 2008
Offensive Performance

Puck Possession

- Conquered Puck
- Received Pass

Puck Outcome

- Successful Shot
- Lose Puck
- Offensive Pass
Methods

Design
• Prospective cohort study

Participants
• 12 elite Pee Wee games were filmed in Québec City (n=333 players)
• 11 elite Pee Wee games were filmed in Calgary (n=309 players)

Analysis
• Poisson regression, clustered by game
• Unadjusted incidence rate ratios (IRRs) of each puck action per team game between players in Calgary and Québec City for the 2013-14 season
Results

IRR=0.99
(95% CI: 0.89-1.10)

IRR=0.98
(95% CI: 0.88-1.10)

Québec
Calgary

Possession Variables
IRR= Incidence rate ratio Québec vs Calgary
IRR= Unadjusted for covariates but adjusted for cluster
Results

Outcome Variables

IRR= Incidence rate ratio Québec vs Calgary
* 95% CI does not include 1

IRR= Unadjusted for covariates but adjusted for cluster

 Québéc

Lost Puck

Offensive Pass

IRR=0.97
(95%CI: 0.81-1.15)

IRR=0.98
(95%CI: 0.86-1.12)

IRR=0.98
(95%CI: 0.86-1.12)
Limitations

• **Camera angle**
 – Differed between games depending on arena

• **Video quality**
 – Quebec City poorer visual quality

• **Field of view**
 – Single view can lead to missed actions
Conclusions

• No evidence of a difference between those with and without a previous history of concussion on HCST component scores.

• No differences found across all offensive performance metrics between those with and without one-year BC experience in Pee Wee.

• Suggests that offensive performance is not negatively affected by Hockey Canada’s decision to delay BC to Bantam.
Acknowledgments

• Dr. Carolyn Emery
• Dr. Willem Meeuwisse
• Dr. Brent Hagel
• Dr. Luc Nadeau
• Dr. Carly McKay
• Dr. Luz Palacios-Derflingher
• Ash Kolstad

Hockey Alberta
Alberta Innovates Health Solutions
Children's Hospital Research Institute
CIHR IRSC
Hockey Calgary
Hotchkiss Brain Institute
Sport Injury Prevention Research Centre
Thank you

The UofC Sport Injury Prevention Research Centre is one of the International Research Centres for Prevention of Injury and Protection of Athlete Health supported by the International Olympic Committee.