The Effect of Humeral and Ulnar Tunnel Placement on Achieving UCL Graft Isometry

Ajay C. Lall, MD, MS1, David P. Beason, MS1, Jeffrey R. Dugas, MD1, E. Lyle Cain Jr., MD1

1American Sports Medicine Institute, Birmingham, AL

Background

- Acute and attritional injury to the UCL occurs most often in overhead athletes, especially baseball pitchers, due to valgus overload during the throwing motion.
- UCL reconstruction has been mainstay of treatment since its first description by Dr. Frank Jobe in 1974.
- Limited literature available on the assessment of UCL graft isometry in the setting of single point fixation methods.

Purpose

- Assess changes in UCL graft effective tension between multiple humeral and ulnar bone tunnels combinations

Methods

- 10 fresh-frozen cadaveric elbows were dissected to expose the native UCL
- 3 humeral and 3 ulnar tunnels created using 0.86-mm guide wires and 1.7-mm cannulated drill bit
- 2.0-mm cannulated screws were placed in 6 total tunnels (Fig. 1)

- Anteriorepi = anterior med epicondyle
- Centralepi = central med epicondyle
- Posteriorepi = posterior med epicondyle
- Anteriortub = anterior sublime tubercle
- Centraltub = central sublime tubercle
- Posteriortub = posterior sublime tubercle

- Suture passed between each cannulated screw combination (9 total combinations)
- At the medial epicondyle, suture was secured with hemostat clamp
- At the sublime tubercle, suture was fixed within a cannulated isometric positioner (Fig. 2)

Testing Protocol

- Preconditioning: each elbow cycled twice through a 120-degree arc of motion to eliminate creep in system prior to data collection
- Data collection: changes in system tension measured by the isometric positioner were recorded at 0, 30, 60, 90, and 120 degrees of flexion
 - Positive values (increased tension) = spring compression
 - Negative values (decreased tension) = spring relaxation
- Statistics: values between the 9 tunnel combinations were analyzed using one-way analysis of variance with Tukey's Honest Significant Difference for pairwise comparisons. Significance was set at p≤0.05.

Results

- Significant effect (p<0.0001) of tunnel placement at all degrees of flexion

- No significant differences between ulnar tunnel locations when paired with any single humeral tunnel

- Anterior or posterior humeral tunnel positioning caused diminished isometry during all range of motion testing (Fig. 3)
 - Anteriorepi tunnel placement caused graft loosening at 120 degrees
 - Posteriorepi resulted in graft tightening

- Greatest displacement occurred with Posteriorepi – Posteriortub pairing (Fig. 4)

- Central(epl) (central medial epicondyle) tunnel placement resulted in the most isometric findings

Conclusion

- UCL graft isometry is dependent upon optimal bone tunnel placement.
- Deviation, anterior or posterior, from the centroid of the UCL footprint on the medial epicondyle significantly affects isometry to a greater extent than sublime tubercle tunnel deviation.

Acknowledgements

The authors thank CJ Curran, GS Fleisig, C Pillay. Supported by Arthrex, Inc. in the form of funding, cadaveric specimens, and in kind donation of surgical products.