INTRODUCTION

• Anterior Cruciate Ligament (ACL) injury is one of the most common ligamentous injuries of the knee.
• Although many patients have good outcomes after ACL reconstruction, a number of patients experience instability or graft failure.
• The posterior tibial slope (PTS) of the tibial plateau may play a role in ACL injury mechanisms [1].

A paired t-test was used to analyze statistical significance between normal and osteotomized knees every 5° of flexion.

- Significance level was set at p < 0.05.

MATERIALS AND METHODS

• Eleven fresh-frozen cadaveric knees were tested.
 - Mean age of 27 years (range: 18 to 41 years)
• The femoral attachment of the ACL was mechanically isolated and attached to a load cell for direct measurement of resultant ACL force (Figure 2).

PTF was calculated using a 3D digitizer (FARO Gage; Figure 3).
 - A reference axis was defined between midpoints along the long axis of the tibia.
 - Markers were placed on the anterior and posterior margins of the medial and lateral tibial plateau.
 - Medial PTS was calculated as the angle between the medial tibial plateau and the perpendicular to the reference axis (long axis of tibia).
 - Lateral PTS was calculated as the angle between the lateral tibial plateau and the perpendicular to the reference axis.
• The tibia and femur were potted in PMMA and attached to a 6-DOF robot (Figure 4; Kuka KR210).
 - The robot flexed the knee from 0° to 50° under 200 N TFC combined with the following loads:
 - 45 N anterior tibial force (AF)
 - 5 Nm valgus moment (VM)
 - 2 Nm internal tibial torque (IT)
 - 45 N AF + 5 Nm VM + 2 Nm IT
 - Knee kinematics and resultant ACL force were recorded.
• After testing the normal knee, a 10° PTF-reducing osteotomy was performed (Figure 4), and the knee was re-tested.
 - A paired t-test was used to analyze statistical significance between normal and osteotomized knees every 5° of flexion.
 - Significance level was set at p < 0.05.

DISCUSSION AND CONCLUSIONS

• PTF-reducing osteotomy significantly reduced ACL force under TFC combined with AF or VM.
 - Likely due to the corresponding anterior, internal, and valgus kinematic changes.
• There were no significant differences in ACL force for all conditions with an applied IT.
 - ACL force during internal tibial rotation is produced by cruciate impingement from internal winding and not a reduction of anterior tibial translation.
• The osteotomy is effective at protecting the ACL in the absence of IT, but the protective effect is lost when IT is applied.

ACKNOWLEDGMENTS

This study was supported in part by the Orthopaedic Research and Education Foundation and H&H Lee Surgical Research Scholars Program.

REFERENCES