The Effect of Purified Human Bone-Marrow Derived Mesenchymal Stem Cells on Rotator Cuff Healing in an Athymic Rat

Degen RM, Carbone A, Carballo C, Chen T, Zong J, Lebas A, Yiang L, Deng XH, Rodeo SA

Hospital for Special Surgery, Sports Medicine and Shoulder Service, 535 East 70th Street, New York, NY 10021

INTRODUCTION

- Re-tear rates following arthroscopic rotator cuff repair remain high (13-64%) likely due to healing by fibrovascular scar formation, rather than regeneration of the normal insertion
- Some investigators have used “stem cells” derived from bone marrow or adipose tissue to augment repairs and improve healing
- However, variable results have been reported, likely due to the variable and small number of true stem cells in marrow and adipose tissue

OBJECTIVES

- The purpose of this study was to evaluate the ability of purified human bone-marrow derived MSCs to augment healing of a rotator cuff repair in a small-animal model, evaluating the structure and composition of the healing tendon-bone interface with histologic and biomechanical analysis
- We hypothesize that healing will be improved using a population of selected cells based on expression of specific stem cell markers

METHODS

- 52 Athymic, nude rats obtained: 26 Control, 26 Experimental
- hMSC acquired commercially (ATCC, Manassas, VA)
- Flow cytometry verified the phenotype of the cells after 5th passage as CD73+, CD90+, CD105+, and CD45-
- Procedure: Unilateral detachment and repair of supraspinatus tendon
 - Control – fibrin glue at tendon-bone interface
 - Experimental – fibrin glue with 10^6 MSC at tendon-bone interface
- Rats euthanized at 2 weeks and 4 weeks for analysis

RESULTS

Biomechanical Testing

- At 2 weeks, load-to-failure was significantly greater in the MSC group compared with the control group (11.5±2.4 N/mm vs. 8.5±2.4 N/mm, p=0.002)
- Similarily, stiffness was also greater in the MSC group compared with the control group at 2 weeks (7.1±1.2 N/mm vs. 5.7±2.1 N/mm, p<0.001)
- By 4 weeks, there were no statistically significant differences between groups

Histologic Analysis

- At 2 weeks, there was a significantly greater amount of fibrocartilage at the enthesis in the cell-treated group compared to the control group (16.6±2.9 % vs. 9.1±1.6 %, p=0.026), although the difference was not appreciable by 4 weeks

CONCLUSIONS

- Rotator cuff repair augmentation with purified human MSCs improved early histologic appearance and biomechanical strength of the repair at 2 weeks
- By 4 weeks, the effects dissipated with no significant differences between groups
- Consequently, MSCs may improve early rotator cuff healing during a period where the repair construct is vulnerable to re-injury
- Further clinical studies are necessary to determine the efficacy of MSC utilization in rotator cuff repair augmentation

REFERENCES