Plantar Fasciitis: What to Do With Refractory Patients

Craig Young, MD
Medical College of Wisconsin
Goals

- Basic science background - brief
- Diagnosis - really brief
- Treatment
 - Brief summary of treatment options
 - Discuss my approach to patients
Etiology

- **Acute (rare) - may occur from trauma**

- **Chronic**
 - Repetitive overloading of the plantar fascia (Kogler 95,96,99)
 - Tendonopathic & chronic enthesitic changes
 - Collagen degeneration
 - Fiber disorientation
 - Increased ground substance
 - Absence of inflammatory cells (Maffulli 03 & Yuan 03)
Key findings on history & exam

- Worse pain with 1st AM steps
 - Pain after prolonged non-weight bearing
- Pain with barefoot walking
- No symptoms & signs of neurologic involvement
- Pain & tenderness over plantar fascia origin
- Windlass test
- Sensitivity 13.6%; Specificity 100%
- Weight-bearing windlass
 - Sensitivity 31.8%; Specificity 100%

(DeGarceau 2003 Foot & Ankle Intl)
Treatment options

“Traditional”
- Stretching & strengthening
- Modalities
- NSAIDs
- Cortisone
- Night splints & walking boots
- Foot wear, orthotics, heel cups & arch supports
- Surgery

“Newer”
- Deep tissue techniques
- Extracorporeal & intracorporeal shock wave
- Prolotherapy, PRP, botox autologous blood injection
- Nitroglycerin patches
- Nerve ablation – cryo & RF
My approach

- Relative rest
- Stretching
 - Consider night splint
 - Physical therapy
 - Strengthening?
- Arch support
 - Check shoes
 - Arch taping
 - OTC
 - Orthotic
- Patience

- Adjunctive
 - Acetaminophen
 - NSAIDs
My approach, continued

- More patience
- For chronic or those who like intervention
 - Injection
 - Autologous blood vs. PRP vs. cortisone
 - ECSW
 - Surgery
Panel comments
Any questions?
Table of Contents

1. Prevention: Not applicable to this module. .. 2

2. Screening: Not applicable to this module. .. 2

3. Diagnosis: Use history and physical examination to look for specific features of plantar fasciitis. ... 2

3.1 Use history to elicit symptoms compatible with the diagnosis of plantar fasciitis ... 2

3.2 Perform general musculoskeletal and neurologic examination to diagnose plantar fasciitis ... 3

3.3 Def er diagnostic testing in patients in whom plantar fasciitis is clinically apparent. ... 3

3.4 Consider the differential diagnosis of plantar fasciitis. 4

4. Consultation for Diagnosis: Obtain appropriate consultation for help in diagnosing plantar fasciitis if the diagnosis is uncertain. 5

4.1 Consult an expert in the diagnosis and treatment of heel pain to verify the diagnosis of plantar fasciitis or to suggest an alternative diagnosis. 5

5. Hospitalization: Not applicable to this module. 5

6.1 Consider the variety of non-drug treatments for plantar fasciitis. 5

6.2 Recognize that evidence for the use of specialized physical therapy modalities is limited. ... 8

6.3 Consider surgery in recalcitrant cases of plantar fasciitis 10

7. Drug Therapy: Consider drug therapy as an adjunct to non-drug treatment of plantar fasciitis. ... 11

7.1 Consider nonsteroidal antiinflammatory drugs for pain relief 11

7.2 Consider corticosteroid injections for plantar fasciitis. 11

7.3 Consider injection with autologous blood as an alternative to steroids. ... 13

8. Patient Education: Inform patients about the management and prognosis of plantar fasciitis. ... 14
References

- De Garceau D, Dean D, Requejo SM, Thordarson DB. The association between diagnosis of plantar fasciitis and Windlass test results. Foot Ankle Int. 2003;24:251-5. (PMID:12793489)

Ibrahim MI, Donatelli RA, Schmitz C, Hellman MA, Buxbaum F. Chronic plantar fasciitis treated with two sessions of radial extracorporeal shock wave therapy. Foot Ankle Int. 2010;31:391-7. (PMID:20460065)

Epidemiology

- 2 million person/yr in US
- 1 million patient visits/yr
- 3rd most common injury in runners
- Cost of treatment to third-party payers ranged from $192-376 million in 2007 in USA

(Riddle 2004, Tauton 2002, Tong 2010)
Radiologic studies

- Plain x-rays - only useful to r/o other conditions
 - Heel spurs 2x more likely in pt with PF

- MRI or Dx UTZ
 - Both show increases in fascia thickness in PF of 1.5 - 1.9 mm
Differential diagnosis

- Plantar fascia rupture
- Calcaneal fracture
- Calcaneal apophysitis
- Heel fat pad syndrome
- Longitudinal arch strain
- Nerve entrapment
- Tumor
Modalities

- Studies including ultrasound, laser, magnetic fields
- Overall - no significant improvement
- When to use
 - Resistant cases
 - Speed is of essence
NSAIDs

- A randomized, PC study of 29 patients
 - 17 on placebo and 12 on NSAIDs
- Both groups improved at the 1, 2 & 6 month follow-up
 - Trend toward improved pain control & disability in the NSAID group
- Significant improvements overall in both groups.

(Donley 2007 Foot Ankl Intl)
Corticosteroid injection

- Short term benefits

- Risks/side effects
 - Pain
 - Post-injection flare (2-5%)
 - Infection
 - 0.072% with aseptic technique
 - 0.0001% with sterile technique
 - Bleeding
 - HPA suppression

Gray 1983
AAOS orthopaedic surgeons survey re: cortisone

- 90% use cortisone
 - 73% injected plantar fascia in past yr
- 89% observed complication
 - Subcutaneous fat atrophy (64%)
 - Skin atrophy & pigment changes (54%)
 - Tendon rupture (39%)
 - Cartilage damage (20%)
 - Infection (18%)

Fadale & Wiggins 1994 J Am Acad Ortho Surg
Is a 3-phase bone scan a cortisone success prognosticator?

- 14/20 feet responding to injection had focal hyperemia on the blood-pool images
- None with diffuse uptake on the blood-pool images responded.

(Frater 2006 J Nuclear Med)
Injecting cortisone

- Dose
 - ~ 40 mg of methylprednisolone
 - ~ 1 cc of most corticosteroid preparations
 - + 2 cc anesthetic
 - 25 gauge 1.5” needles
Plantar fascia injection technique #1

- **Advantage**
 - Easy to hit target

- **Disadvantages**
 - Increased risk of heel fat pad atrophy
 - Increased risk of plantar fascia rupture?
Plantar fascia injection technique #2

- **Advantages**
 - Decreased risk of heel fat pad rupture
 - Decreased risk of plantar fascia rupture?

- **Disadvantages**
 - Greater chance of missing target
 - Less effective?

- Ultrasound guidance?
Night splints

- Multiple trials including crossover and RCT show significant improvement
 - 4 positive; 1 no effect
Walking boot?

- Pilot study 16 subjects in randomized single blinded study
- Stretching vs. “SAS brace”
- No difference
- Sharma NK. 2010
Arch support

- Both taping & orthotics show increases in function &/or decreases VAS in most studies
 - 5 positive; 1 no effect
Orthotics vs. night splints

- RCT of 43 patients to foot orthosis, foot orthosis and night splint, or night splint alone.

- All patients had significant improvement on their Foot and Ankle Outcome Scores at 12 week and 1 year follow-up visits.

- The foot orthosis had significantly
 - better pain reduction
 - better compliance
 - fewer side effects.

(Roos 2006 Foot Ankle Intl)
Treatment

- Do nothing
 - Most/many patients in control group of RCT eventually heal

- Key is proper framing

- Rest, ice, stretching, cross-friction massage
Shoe exam

- Beware of midshoe breakdown
- If shoe bends easily midsole instead of at MTP joint
 - Cause overstretch of the plantar fascia with each step
Surgical

- Risks
 - Infection, bleeding, pain
 - Scarring, nerve damage
 - Loss of arch
Surgical release

- Retrospective review of 22 consecutive patients with chronic plantar fasciitis & endoscopic plantar fascia release after at least 6 months postoperatively
 - Satisfaction rate of 97.7%
 - All patients reporting at least a 50% improvement in pain.
 - Modified Mayo Foot and Ankle Score, 15 of 22 (68%) had good or excellent results

(Hogan 2004 Foot & Ankle Intl).
Surgical release

- 32 patients endoscopic plantar fasciotomy.
 - 16 athletic patients all had results were excellent or good.
 - Good or excellent results in the non-athletic group were obtained only in patients who walked for exercise.
 - All five patients with poor results having a BMI of more than 27.

(Saxena 2004 Foot & Ankl Intl)
Long term effects

- Change in center of pressure in gait analysis compared to non-operated foot (Tweed JL 2009)
“Newer” treatments
Deep tissue techniques

- A.R.T., ASTYM & Graston
- Theory
 - Mechanical breakdown of scar tissue
 - Stimulate healing cascade
Extracorporeal shock wave therapy (ECSW)

- High energy shock waves generated
- Mechanical pressure & tension force plus trailing cavitation bubbles which collapse into "micro-jets"
 - Both induce microtrauma
 - Induces blood vessel formation
 - Increased delivery of nutrients
 - Increased dissolution of calcific deposits
Low-energy shock wave
- Series of three or more treatments.
- Minimal to mildly painful

High-energy shock wave
- Single session.
- Quite painful - require anesthesia (regional block or general)

Theory is to induce neovascularization & healing via creating localized inflammatory process
ECSW study results

<table>
<thead>
<tr>
<th>Favorable</th>
<th>Neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rompe 2003</td>
<td>Speed 2003</td>
</tr>
<tr>
<td>Ogden 2004</td>
<td>Haake 2003</td>
</tr>
<tr>
<td>Kudo 2006</td>
<td>Hammer 2003</td>
</tr>
<tr>
<td>Wang 2006</td>
<td>Theodore 2004</td>
</tr>
<tr>
<td>Malay 2006</td>
<td>Greve 2009</td>
</tr>
<tr>
<td>Gerdesmeyer 2008</td>
<td></td>
</tr>
<tr>
<td>Ibrahim 2010</td>
<td></td>
</tr>
</tbody>
</table>
Intracorporeal pneumatic shock application

- 50 patients in RCDB study
- 6 month follow-up
 - Excellent & Good outcomes (92%) vs. control group (24%) ($P < 0.001$)
 - VAS were 2.04 in treatment group vs. 7.16 control group

- Dogramaci Y. Arch Orthop & Trauma Surg 2010
Prolotherapy – the theory

- Proliferates cause local irritation triggering inflammatory cascade
 - Irritants (phenol, tannic acid) & particulates (pumice granules)
 - Osmotic agents (zinc sulfate, dextrose, glycerin)
 - Chemotactic attracters (cod liver extract/sodium morrhuate)
Prolotherapy – the evidence

- Limited & mixed
- Side effects – short-term stiffness & pain
- Not usually covered by insurance

(Ryan 2009) - Dextrose 3 tx q 6wk in 20 patients; G+Ex in 75% no change in 25%
Autologous blood injection (also enriched platelet plasma)

- Rationale: stimulate acute healing cascade
- Via cellular and humoral mediators
- Procedure: 2cc of blood + 1cc lidocaine
Autologous blood injection

- RCT 44 patients treated with either autologous blood injection or methylprednisolone acetate.
- At the 6-month follow-up, both groups had similar significant decreases in VAS pain scores.

Kiter 2006 Am Pod Med Assoc
Autologous blood injection

- 16 patients
 - Pain decreased from 7.13 to 2.75.
 - Nirschl activity staging scale decreased from 6.19 to 2.88.
 - 62% were able to resume strenuous activity
 - 70% that returned to strenuous activity could do so without pain.
 - Nineteen percent reported no response to blood injection

Platelet rich plasma (PRP)
Platelet rich plasma (PRP)
Botox injection

- **Theory**
 - Abductor hallucis & FHB are the injection sites.
 - Increases flexibility of the plantar musculature.

- Mostly case reports

- *(Babcock 2005)* RCT Botox vs. Saline significant improvement in Pain @ 3 & 8 wks

- *(Huang 2010)* RDBC significant improvement in pain & decrease in PF thickness @ 3 & 12 weeks
Nitroglycerin patches

- **Theory**
 - Dilates blood vessels leading to increased blood flow
 - Increases levels of nitric oxide, which may stimulate healing

- **Treatment regimen**
 - 1/4 patch 0.2 mg/hr for 18-24°
 - 4/6 to 12+ week course

- **Side effects – headache**

Paolini 2007, McCallum 2011
Cryosurgery: percutaneous denervation

- 61 cases of chronic plantar fasciitis.
- Mean VAS 8.38 to 1.26 after 1 day
- After 1 year
 - Mean VAS score was 1.26
 - 32 heels being totally asymptomatic
 - 90% having a VAS score < 4.
 - Three patients eventually needed surgery

(Allen 2007 J Foot & Ankl Surg)
Radiofrequency nerve ablation

- 22 patients
- VAS 8.12 initially
- 3.26 after 1 week
- 1.46 1 month
- 1.96 3 months
- 2.07 6 months
- No further changes at 1 year
- Liden B 2009
Prevention

- Primary
 - Congenital
 - Hypermobile medial column cavus
 - Pronation of subtalar joint
 - Low medial longitudinal arch
 - Equinus foot
 - Weak intrinsic foot muscles

- Secondary