Open sup-pectoral biceps tenodesis: A biomechanical comparison of interference screw and various fixation techniques

Miguel Diaz BS, Brendan Shi BS, Matthew Baker MD, Stephen Belkoff PhD, Uma Srikumaran MD
Johns Hopkins Department of Orthopaedic Surgery
Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

BACKGROUND

- Injuries of the long head of the biceps (LHB) tendon are frequently responsible for pain and discomfort at the shoulder.
- Surgical treatment consists of biceps tenodesis, with fixation of the tendon at the proximal humerus.
 - Variety of fixation methods
 - Suprapectoral or subpectoral placement
 - Three different visualization techniques
- Tenodesis has proven to provide clinical benefits, but the optimal fixation technique has not been identified in biomechanical or clinical studies.

STUDY OBJECTIVE

- Evaluate the mechanical properties of six biceps tenodesis fixation techniques.

METHODS

- Forty-two fresh frozen human cadaver upper extremities were obtained from the Maryland State Anatomy Board (mean age, 70.5 years [range, 54 to 89 years; SD, 9.8 years], 69% male specimens).
- Specimens were excluded from the study if they demonstrated degenerative or surgical changes.
- Specimens were randomly divided into 6 tenodesis technique groups, with 7 specimens in each group:
 - Interference Screw
 - Endobutton
 - Double-loaded 2.9 mm Suture Anchor
 - Double-loaded 1.9 mm Suture Anchor
 - Single-loaded 1.7 mm Suture Anchor
 - Soft Tissue
- Biceps tenodesis procedures were performed in an open manner per the manufacturer’s published surgical techniques.
- After tenodesis, specimens were loaded onto a materials testing machine and underwent load to failure testing with force directed parallel to the humerus.
- The effects of treatment, age, gender, and bone mineral density were analyzed with a generalized linear and latent mixed model (GLLAMM) to account for specimen pairing on donors.

RESULTS

<table>
<thead>
<tr>
<th>Technique</th>
<th>Age [yr]</th>
<th>Male/Female</th>
<th>BMD [g/cm²]</th>
<th>Failure Load [N]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interference Screw</td>
<td>70.7 ± 5.3</td>
<td>6/1</td>
<td>.802 ± .093</td>
<td>78.6 ± 20.5</td>
</tr>
<tr>
<td>Endobutton</td>
<td>69.4 ± 8.0</td>
<td>4/3</td>
<td>.700 ± .118</td>
<td>126.0 ± 33.1</td>
</tr>
<tr>
<td>DL-2.9mm Anchor</td>
<td>73.9 ± 5.2</td>
<td>5/2</td>
<td>.701 ± .116</td>
<td>122.9 ± 30.6</td>
</tr>
<tr>
<td>DL-1.9mm Anchor</td>
<td>68.0 ± 4.1</td>
<td>4/3</td>
<td>.739 ± .083</td>
<td>110.6 ± 21.2</td>
</tr>
<tr>
<td>SL-1.7mm Anchor</td>
<td>69.9 ± 5.1</td>
<td>5/2</td>
<td>.749 ± .144</td>
<td>131.9 ± 36.8</td>
</tr>
<tr>
<td>Soft Tissue</td>
<td>71.3 ± 5.8</td>
<td>5/2</td>
<td>.749 ± .067</td>
<td>98.3 ± 19.5</td>
</tr>
</tbody>
</table>

Secondary Analyses

- There was no statistically significant difference found amongst treatment groups in terms of ultimate failure loading after analysis with GLLAMM (P=0.532).
- Comparing the 95% confidence interval of the interference screw treatment group (81.9-99.1N) to the 95% CI of the endobutton (102.9-169.1N) and DL-2.9 mm anchor groups (102.9-162.8N) suggests that the interference screw treatment is significantly weaker.
- Utilizing a 112 N reference mark, which approximates force on LHB tendon during performance of activities of daily living and post-surgical physical rehabilitation, rules out interference screw, DL-1.9 mm suture anchor, and soft tissue tenodesis as viable treatment options.
- Failure mainly occurred at the tendon (35/42), indicating that the most important factor for initial strength is not the attachment site but the quality of the biceps tendon.

CONCLUSIONS

- Of the six biceps tenodesis techniques that were evaluated, only interference screw fixation was significantly weaker than any other construct.
- Endobutton, DL-2.9 mm anchor, and SL-1.7mm anchor are capable of withstanding demands of ADLs and physical rehabilitation.

LIMITATIONS

- Tenodesis was performed on human cadaveric specimens, which may not accurately represent in vivo strength of fixation constructs.
- Surrounding tissues were removed during preparation of specimens, thus their effect on fixation strength was eliminated.

IMPLICATIONS

- Many fixation approaches provide similar biomechanical strength, thus other factors may drive clinical decision making.
 - Clinical ease of use
 - Costs
 - Time required to perform
 - Effects on rehabilitation
- Further biomechanical and clinical studies are needed to discover optimal tenodesis technique.

REFERENCES